Search results for "biorthogonal sets of vector"

showing 3 items of 3 documents

Gibbs states, algebraic dynamics and generalized Riesz systems

2020

In PT-quantum mechanics the generator of the dynamics of a physical system is not necessarily a self-adjoint Hamiltonian. It is now clear that this choice does not prevent to get a unitary time evolution and a real spectrum of the Hamiltonian, even if, most of the times, one is forced to deal with biorthogonal sets rather than with on orthonormal basis of eigenvectors. In this paper we consider some extended versions of the Heisenberg algebraic dynamics and we relate this analysis to some generalized version of Gibbs states and to their related KMS-like conditions. We also discuss some preliminary aspects of the Tomita-Takesaki theory in our context.

Pure mathematicsPhysical systemFOS: Physical sciencesBiorthogonal sets of vectors01 natural sciencesUnitary statesymbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: MathematicsOrthonormal basis0101 mathematicsAlgebraic numberOperator Algebras (math.OA)Eigenvalues and eigenvectorsMathematical PhysicsMathematics010308 nuclear & particles physicsMathematics::Operator AlgebrasApplied Mathematics010102 general mathematicsTime evolutionMathematics - Operator AlgebrasTomita–Takesaki theoryMathematical Physics (math-ph)Gibbs statesNon-Hermitian HamiltoniansComputational MathematicsComputational Theory and MathematicsBiorthogonal systemsymbolsHamiltonian (quantum mechanics)
researchProduct

A Note on States and Traces from Biorthogonal Sets

2019

In this paper, following Bagarello, Trapani, and myself, we generalize the Gibbs states and their related KMS-like conditions. We have assumed that H 0 , H are closed and, at least, densely defined, without giving information on the domain of these operators. The problem we address in this paper is therefore to find a dense domain D that allows us to generalize the states of Gibbs and take them in their natural environment i.e., defined in L &dagger

Pure mathematicsnon-Hermitian HamiltoniansGibbs statePhysics and Astronomy (miscellaneous)lcsh:MathematicsGeneral Mathematicsbiorthogonal sets of vector010102 general mathematicsGibbs stateslcsh:QA1-93901 natural sciencesDomain (software engineering)TheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESSettore MAT/05 - Analisi MatematicaChemistry (miscellaneous)Biorthogonal system0103 physical sciencesComputer Science (miscellaneous)0101 mathematics010306 general physicsMathematicsSymmetry
researchProduct

Gibbs states defined by biorthogonal sequences

2016

Motivated by the growing interest on PT-quantum mechanics, in this paper we discuss some facts on generalized Gibbs states and on their related KMS-like conditions. To achieve this, we first consider some useful connections between similar (Hamiltonian) operators and we propose some extended version of the Heisenberg algebraic dynamics, deducing some of their properties, useful for our purposes.

Statistics and ProbabilityPure mathematicsGibbs stateGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesPhysics and Astronomy (all)symbols.namesakeSettore MAT/05 - Analisi Matematica0103 physical sciencesnon-Hermitian HamiltonianMathematical PhysicBiorthogonal sets of vectorAlgebraic number010306 general physicsSettore MAT/07 - Fisica MatematicaMathematical PhysicsMathematicsQuantum Physics010308 nuclear & particles physicsStatistical and Nonlinear PhysicsMathematical Physics (math-ph)Modeling and SimulationBiorthogonal systemsymbolsHamiltonian (quantum mechanics)Quantum Physics (quant-ph)Statistical and Nonlinear Physic
researchProduct